
CSE 333 Section 5 - Heap, Templates, STL
Welcome back to Section! We’re glad that you’re here :)

Exercise 1

#include <cstdlib>

class HeapInt{
public:
HeapInt() { x_ = new int(5); }
~HeapInt () { delete x_; } // Delete the allocated int

private:
int* x_;

};

int main(int argc, char** argv) {
HeapInt** hpint_ptr = new HeapInt*;
HeapInt* hpint = new HeapInt();
*hpint_ptr = hpint;
delete hpint_ptr;
delete hpint; // Delete of hpint_ptr doesn’t delete what hpint

points to
return EXIT_SUCCESS;

}

Assuming an instance of HeapInt takes up 8 bytes (like a C-struct with just int* x_), how
many bytes of memory are leaked by this program? How would you fix the memory leaks?
Leaks 12 bytes of memory: 8 bytes for the allocated HeapInt object hpint points to + 4 bytes
for the int the HeapInt instance allocates in its constructor.
Deleting the hpint_ptr doesn’t automatically delete what the pointer points to. Have to also
delete hpint and then create a destructor that deletes the allocated int pointer x_.

Exercise 2

class HeapArr{
public:
HeapArr() { arr_ = new int[5]; }
~HeapArr() { delete [] arr_; }

private:
int* arr_;

};

int main(int argc, char** argv) {
HeapArr* hparr1 = new HeapArr;
HeapArr* hparr2 = new HeapArr(*hparr1); // HeapArr's cctor

delete hparr1;
delete hparr2;

return EXIT_SUCCESS;
}

Identify the memory error with the following code. Then fix it! Hint: Draw a memory diagram.
What happens when hparr1 gets deleted?

The default copy constructor does a shallow copy of the fields, so hparr2’s arr_ points to the
same array as hparr1’s arr_. When hparr1 gets deleted, so does its arr_. But this arr_ is
the same one hparr2’s arr_ points to, so when hparr2 gets deleted, its arr_ has already
been deleted, leading to an invalid delete (similar to a double free()).

C++ Templates

Exercise 3) Templates & Things
Fill in the blanks below for the definition of a simple templated struct Node for a singly-linked list.
The struct has two public fields: a value, which is a pointer of template type T pointing to a
heap allocated payload, and a next, which is a pointer to another struct Node. The struct also
has a two-argument constructor that takes a T pointer for value and another Node<T> pointer
for next.

template <typename T>
struct Node {

Node(T* val, Node<T>* node): value(val), next(node) {}

~Node() { delete value; }

T* value;
Node<T>* next;

};

Remember that struct in C++ by default has its members being public, so no need to specify the
access modifiers explicitly here.

C++’s Standard Library

Exercise 4) Standard Template Library
Complete the function ChangeWords below. This function has as inputs a vector of strings,
and a map of <string, string> key-value pairs. The function should return a new
vector<string> value (not a pointer) that is a copy of the original vector except that every
string in the original vector that is found as a key in the map should be replaced by the
corresponding value from that key-value pair.

Example: if vector words is {"the", "secret", "number", "is", "xlii"} and map
subs is {{"secret", "magic"}, {"xlii", "42"}}, then ChangeWords(words,
subs) should return a new vector {"the", "magic", "number", "is", "42"}.

Hint: Remember that if m is a map, then referencing m[k] will insert a new key-value pair into
the map if k is not already a key in the map. You need to be sure your code doesn’t alter the
map by adding any new key-value pairs. (Technical nit: subs is not a const parameter because
you might want to use its operator[] in your solution, and [] is not a const function. It’s fine
to use [] as long as you don’t actually change the contents of the map subs.)

Write your code below. Assume that all necessary headers have already been written for you.

using namespace std;
vector<string> ChangeWords(const vector<string> &words,

map<string,string> &subs) {

vector<string> result;
for (auto &word : words) {

if (subs.find(word) != subs.end()) {
result.push_back(subs[word]);

} else {
result.push_back(word);

}
}
return result;

}

