CSE 333 Section 5 - Heap, Templates, STL

Welcome back to Section! We’re glad that you're here :)
Exercise 1

#include <cstdlib>

class HeapInt{

public:

HeapInt() { x_ = new int(5); }

~HeapInt () { delete x ; } // Delete the allocated int
private:

int* x ;

}s

int main(int argc, char** argv) {

HeapInt** hpint ptr = new HeapInt*;

HeapInt* hpint = new HeapInt();

*hpint ptr = hpint;

delete hpint ptr;

delete hpint; // Delete of hpint ptr doesn’t delete what hpint
points to

return EXIT SUCCESS;
}

Assuming an instance of HeapInt takes up 8 bytes (like a C-struct with just int* x), how
many bytes of memory are leaked by this program? How would you fix the memory leaks?
Leaks 12 bytes of memory: 8 bytes for the allocated Heaplint object hpint points to + 4 bytes
for the int the Heaplnt instance allocates in its constructor.

Deleting the hpint ptr doesn’t automatically delete what the pointer points to. Have to also
delete hpint and then create a destructor that deletes the allocated int pointer x_.

Exercise 2

class HeapArr({

public:
HeapArr () { arr_ = new int[5]; }
~HeapArr () { delete [] arr ; }
private:

int* arr ;

}s

int main(int argc, char** argv) {
HeapArr* hparrl = new HeapArr;
HeapArr* hparr2 = new HeapArr (*hparrl); // HeapArr's cctor

delete hparrl;
delete hparr2;

return EXIT SUCCESS;

Identify the memory error with the following code. Then fix it! Hint: Draw a memory diagram.
What happens when hparrl gets deleted?

hparr hparr2
addr addr2

| |

I I
addr addr2
anr_ arr_

‘-.\ = =

_d--""-
N\

The default copy constructor does a shallow copy of the fields, so hparr2’s arr points to the
same array as hparrl’s arr . When hparrl gets deleted, so does its arr . Butthisarr is
the same one hparr2’'s arr points to, so when hparr2 gets deleted, its arr has already
been deleted, leading to an invalid delete (similar to a double free ()).

C++ Templates

Exercise 3) Templates & Things

Fill in the blanks below for the definition of a simple templated struct Node for a singly-linked list.
The struct has two public fields: a value, which is a pointer of template type T pointing to a
heap allocated payload, and a next, which is a pointer to another struct Node. The struct also
has a two-argument constructor that takes a T pointer for value and another Node<T> pointer
for next.

template <typename T>
struct Node {
Node (T* val, Node<T>* node): value(val), next (node) {}

~Node () { delete wvalue; }
T* value;
Node<T>* next;

}s

Remember that struct in C++ by default has its members being public, so no need to specify the
access modifiers explicitly here.

C++’s Standard Library

Exercise 4) Standard Template Library

Complete the function ChangeWords below. This function has as inputs a vector of strings,
and a map of <string, string> key-value pairs. The function should return a new
vector<string> value (not a pointer) that is a copy of the original vector except that every
string in the original vector that is found as a key in the map should be replaced by the
corresponding value from that key-value pair.

Example: if vector words is {"the", "secret", "number", "is", "x1ii"} and map
subsis {{"secret”, "magic"}, {"x1lii", "42"}},then ChangeWords (words,
subs) should return a new vector {"the", "magic", "number", "is", "42"}.

Hint: Remember that if m is a map, then referencing m [k] will insert a new key-value pair into
the map if k is not already a key in the map. You need to be sure your code doesn't alter the
map by adding any new key-value pairs. (Technical nit: subs is not a const parameter because
you might want to use its operator [] in your solution, and [] is not a const function. It’s fine
to use [] as long as you don’t actually change the contents of the map subs.)

Write your code below. Assume that all necessary headers have already been written for you.

using namespace std;
vector<string> ChangeWords (const vector<string> &words,
map<string, string> &subs) {

vector<string> result;
for (auto &word : words) {
if (subs.find(word) != subs.end()) {
result.push back (subs[word]) ;
} else {
result.push back(word) ;

}

return result;

